
The Flying Saucer User's Guide
Getting Started with Flying Saucer

Release R6

May 2006

1.
1.
2.
3.
4.
5.
6.
7.

2.
1.
2.
3.
4.

3.
1.
2.

Table of Contents

An Introduction to Flying Saucer
What It Is
What It Does
What It's Good For
Where the Saucer Does not Fly (what it can't do)
License and Dependencies
Requirements for Running and Using Flying Saucer
Setting your Classpath

Using Flying Saucer
Basic Usage
Creating FilesPDF
Rendering to an Image
Sample Applications

Configuration
The Flying Saucer Configuration File
Logging

Page of 2 14

An Introduction to Flying Saucer

What It Is

Flying Saucer is a renderer, which means it takes XML files as input, and generates a
rendered representation of that XML as output. The output may go to the screen (in a
GUI), to an image, or to a PDF file. Because we believe most people will rely on
conventional practices, our main target for content is XHTML, an XML document
format that standardizes HTML. However, we accept any well-formed XML for
rendering as long as CSS is provided that tells us how to lay it out. In the case of
XHTML, default stylesheets are provided out of the box.

Internally, Flying Saucer works with an XML document and uses CSS to determine
how to lay it out visually. The rules for layout come from the CSS 2.1 Specification,
and according to that spec, element nodes and attributes are matched to CSS
selectors, where each selector identifies some formatting rules. We can't cover how to
use CSS here—it's a long and complex specification—but there are many good books
available, and tutorials on the web. Check out the W3Schools TutorialCSS for a
starting point.

What It Does

Flying Saucer takes XML and CSS as input (where the CSS might be embedded in
the document, or linked from it) and generates rendered content. Our current major
output formats are in a GUI interface (a panel) and in PDF; we can also render to
image formats, e.g. render the page and save as an image.

If rendering to a GUI, hyperlinks work so you can navigate between pages. As with
HTML, you can also render forms, capture output, and create applications that way.
In a GUI, Flying Saucer provides a read-only view of the output; we cannot replace a
text area, say, or Swing's JEditorPane or JTextPane. However, for static
content, or content created by you, Flying Saucer can be used for help documents,
tutorials, books, splash screens, presentations, and much more.

We can also render to PDF. For PDF, the layout rules come from the CSS. The
difference is the rendered output uses the iText library to generate PDF.

Last, we have utility classes to render output to an image file. With this, you could
use XML and CSS to layout printable content—for example, a flyer, a poster,
business cards, etc.—and save them as images you can print out or email. It's also a
nice way to create thumbnail or reduced-size images of pages.

Page of 3 14

What It's Good For

Flying Saucer can be used for any Java application that requires some sort of styled
text. This can be as simple as a chat program or as complicated as a complete ebook
reader with dynamic stylesheets. Flying Saucer is very forward thinking and is
designed to be a part of the next generation of applications that combine rich desktop
clients with web content. Some examples of application types are:

chat programs
online music stores
a Gutenberg eBook reader
a distributed dictionary application
Sherlock style map and movie search
Konfabulator and Dashboard components
an RSS reader
a Friendster client
an eBay client
a splash screen
an about box
a helpfile viewer
a javadoc viewer
report generation and viewing
a stock ticker / weather reporter

Where the Saucer Does not Fly (what it can't do)

Being honorable people, we must admit what Flying Saucer cannot do for you:

It cannot be used for user-editable content; output is read-only.
We render well-formed XML; XHTML is a well-formed document standard.
We can't render most HTML "in the wild". At best, you can "clean up" old
HTML with TagSoup or JTidy and hope for the best. But without a bunch of
work, you won't be able to use Flying Saucer for a real web browser
component. However, note that's not a technical limitation, just a lack of time
and resources.
HTML plugins, like applets, Flash programs, etc. are not supported.
Scripting (e.g. JavaScript) is not supported. We ignore script tags.
Dynamic changes to the content requires a re-layout (quick, but noticeable),
that is, you can't dynamically change the DOM and see results live.
Most DOM callbacks used in JavaScript are not yet implemented (onLoad,
onClick, onBlur, etc.).

These limitations all have a pragmatic origin. Josh Marinacci, the founder of and
original lead developer for the Flying Saucer project, realized that writing a fully
capable HTML browser component (like Firefox's Gecko engine) could take many
man-years of development. But if one focused on well-formed XHTML only, and
stuck to the CSS spec, you could cover most of the useful stuff you want to do with a
rendering engine, and do it in a reasonable amount of time. So it's not impossible to

add scripting, DHTML, plugins to Flying Saucer, we've just deferred this until

Page of 4 14

add scripting, DHTML, plugins to Flying Saucer, we've just deferred this until
someone has the time and energy to get it to work—that way, we stay focused on the
goal, which is pure CSS 2.1 support for well-formed XML.

Of course, you can help fix any of these things. Contributors welcome!

License and Dependencies

Flying Saucer itself is licensed under the GNU Lesser General Public License. You
can use Flying Saucer in any way you want as long as you respect the terms of the
license. A copy of the LGPL is provided under LGPL.txt in our distribution.

Flying Saucer uses a couple of FOSS packages to get the job done. A list of these,
along with the license they each have, is listed in the LICENSE file in our
distribution.

Requirements for Running and Using Flying Saucer

Flying Saucer is built and tested on Java 1.4 and has some dependencies on libraries
only available in 1.4. In principle, you should be able to backport it to 1.3 (or
earlier?), but we've not tried that and don't maintain a 1.3 branch.

Basic requirements:

Java Runtime Environment 1.4 or above (or JDK of course)
core-renderer.jar (our distribution)
CSS Parser Our distribution includes a modified version, redistributed as
allowed by the CSS Parser license
iText (also at iText PDF, distributed unmodified
Ant if you want to build from source
JUnit if you want to run unit tests on source

iText is not necessary at runtime if you are not generating PDFs, but is necessary for
the build to satisfy compile-time dependencies.

In theory, you could substitute another CSS parser that is SAC (Simple API for CSS)
compliant, but we've had little success with this due to variations in implementation.

Most of Flying Saucer does not rely on advanced Java features. It should be usable on
alternate Java implementations, such as GNU Classpath.

Setting your Classpath

You only need the core-renderer.jar and the cssparser-0-9-4-fs.jar
in your CLASSPATH. If you want PDF output, add itext-paulo-155.jar. If
you want anti-aliasing using the Minium toolkit, add minium.jar. That is all you
need for your own programs. You also need an XML parser to be in your classpath,
but this already included in recent versions of the JRE. To run the browser or use any
of it's support classes you will need the browser.jar file.

Page of 5 14

To summarize, the easiest CLASSPATH to set is:

core-renderer.jar (required)
cssparser-0-9-4-fs.jar (required)
itext-paulo-155.jar
minium.jar

Page of 6 14

Using Flying Saucer

Basic Usage

Rendering to a Swing Panel
Showing an About Box

To make life easier for our end-users, we have created a special Java package,
org.xhtmlrenderer.simple, which contains classes you can use to get up and
running without any hassle.

In addition, in a separate branch of our source tree, we created some sample
single-class Java programs to show different uses of Flying Saucer.

To understand where to start, you have to look at how Flying Saucer works. The
input is a document, identifed by a Uniform Resource Identifier (URL) or Uniform
Resource Locator (URI). That document must be well-formed XML. The document
is loaded and elements are matched against the CSS provided for the document. For
XHTML, we have specifications for how CSS is specified—as linked stylesheets, as
inline styles, and as style attributes. For XML, we support linked stylesheets via the
xml-stylesheet processing instruction.

Once we've matched CSS, we run through a layout phase, where we calculate the size
and position, as well as display attributes, of all visible elements. The layout is then
used to render to some output sink. The standard output sink is a Swing JPanel
subclass we call org.xhtmlrenderer.swing.BasicPanel, or its extended
(and more powerful) child, XHTMLPanel.

Rendering to a Swing Panel

In fact, to make it really easy, both
org.xhtmlrenderer.swing.BasicPanel, and its child
org.xhtmlrenderer.simple.XHTMLPanel, allow you to set the document
in one call. In fact, to display a page in a Swing JFrame, the code is very simple.
Take a look at out our SinglePageFrame example in the samples directory. The
important stuff happens in the run() method.

private void run(String[] args) throws Exception {

 loadAndCheckArgs(args);

 //

 // Create a JPanel subclass to render the page

 //

 XHTMLPanel panel = new XHTMLPanel();

 //

 // Set the XHTML document to render. We use the simplest form

 // of the API call, which uses a File reference. There

 // are a variety of overloads for setDocument().

Page of 7 14

 //

 panel.setDocument(new File(fileName));

 //

 // Put our panel in a scrolling pane. You can use

 // a regular JScrollPane here, or our FSScrollPane.

 // FSScrollPane is already set up to move the correct

 // amount when scrolling 1 line or 1 page

 //

 FSScrollPane scroll = new FSScrollPane(panel);

 JFrame frame = new JFrame("Flying Saucer Single Page Demo");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(scroll);

 frame.pack();

 frame.setSize(1024, 768);

 frame.setVisible(true);

}

The basic process is:

create a BasicPanel or XHTMLPanel instance
add it to a Swing JScrollPane or an FSScrollPane (unless your pages
will fit without scrolling
add the panel to a container—a JFrame, another panel, etc.
call setDocument() to load and render your document

That's it! You can now display XHTML and CSS in your Swing applications.

What about AWT or alternate GUI toolkits for Java? Our basic rendering routine
writes to a "renderer". Right now we support the concept of rendering to an output
device. We have two output device implementations: one for Java2D (essentially a
canvas, or Graphics2D instance) and the other for PDF (using iText). When we
render to a Swing panel, we are still painting on a Java2D canvas, so in principle, you
should be able to port this rendering to other 2D output surfaces. If you do, we'd like
to hear from you! Just note there is no explicit technical limitation that forces you to
use Swing—it's just easy, and easy to make it look good.

Showing an About Box

The AboutBox is a prefab component which displays an XHTML document and
automatically scrolls it. It is primarily useful for Help->About menu items and splash
screens.

Here is an example of adding an about box to a menu item's action listener.

import org.xhtmlrenderer.demo.aboutbox.AboutBox;

......

JMenuItem about = new JMenuItem("About...");

about.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

Page of 8 14

 AboutBox ab = new AboutBox("About Flying Saucer",

 "demos/about/index.xhtml");

 ab.setVisible(true);

 }

 });

Creating PDF Files

In release R6, we added the ability to generate PDF files from XML/CSS input. This
means that just by starting with XHTML and CSS, you can create portable PDF
documents that will are readable by the standard Adobe Acrobat Reader

PDF files are treated as paged media, as defined by the CSS 2.1 Specification, in the
section Paged media. This means that some CSS attributes that apply to paged media
(as opposed to visual media, like a browser) are used to control PDF output. Flying
Saucer supports the @page rule, which means that page size, page margins and page
break controls are all supported for PDF output.

Questions and answers about using Flying Saucer for PDF output:

How do you control page size?
How do you control page size on output?PDF
How do you control page margins on output?PDF
What controls pagination?
What about bookmarks?PDF
What about embedded images? Are images downscaled?
Does Flying Saucer support form components?PDF

How do you control page size?

What attributes correspond to "page size" (e.g. letter, legal, A4) in and CSS CSS
?XHTML

The size property as documented in the CSS3 Paged Media module. Everything in the
spec is implemented except auto page handling (the default stylesheet currently sets
letter sized paper with a half inch margin)

How do you control page size on PDF output?

What attributes correspond to "page size" as we understand that in a wordCSS
processor, e.g. US Letter, Legal, or A4?

CSS 2.1 does not support a page size output. Although Flying Saucer currently
targets the 2.1 spec, in this case we brought in a CSS3 property, size. You specify this
as part of the @page rule.

@page {

 size: 8.5in 11in;

}

Page of 9 14

or

@page {

 size: letter;

}

It's described in more details in the CSS3 specification.

How do you control page margins on PDF output?

What attributes correspond to "margin" as we understand that in a wordCSS
processor, e.g. left and right margin of 1inch? is this padding or margin on the body
element?

You can set margin, padding, and border in a @page rule (also part of the CSS3
Paged Media module) i.e.

@page {

 margin: 1in;

}

:first, :right, :left pseudo-pages are supported. CSS3 named pages are not
supported in release R6.

For purposes of pagination, there's nothing special about <body> (e.g. if <body>
spans 20 pages, your top and bottom margins will appear on pages 1 and 20
respectively).

What controls pagination?

Is there a default pagination (whatever fits in the renderable page boundaries)—but
then what is a "page" size? how can I (in the current code) implement a forced
break? which page-break... does Flying Saucer support right now?

Flying Saucer supports all of the CSS page-break properties.

The only limitation is that page-break-before/after: avoid only considers siblings vs.
all margins which meet at that location (as the spec dictates).

If a rule cannot be satisfied (e.g. a prex. <div style="page-break-inside:
avoid;"> spans three pages), the rule is simply dropped as if it never existed.

With the exception of relatively positioned inline content, positioned/floated content
will paginate just like content in the normal flow.

What about PDF bookmarks?

For , what sorts of -specific things does Flying Saucer support, e.g. doPDF PDF
bookmarks work? is there support for TOCs, footnotes?

Page of 10 14

In release R6, Flying Saucer supports bookmarks. TODO: I'll send an example later,
but

basically you define the bookmark structure in <head> and then define

internal links in the document itself to establish a target.

The iText library has a really dizzying array of features so we can get a lot

stuff for free just by providing the XML "API" for it (see AcroForms comment
below).

What about embedded images? Are images downscaled?

Are referenced images altered when embedded in the course of generating ?PDF

No. PDF has its own way of representing image data, but no image fidelity is lost and
the image isn't otherwise modified (e.g. GIFs are stored in a compressed, lossless
format; the size of a JPEG on disk will be the same size as the embedded image in the
PDF).

For intrinsic width/height calculations we assume a resolution of 96 DPI, but setting
an explicit width/height makes it possible to use an arbitrary DPI.

Does Flying Saucer support PDF form components?

What happens with form components when generating a ? Is this supported atPDF
all (if I can't a non-editable form in my output, say, printable form forPDF
handwritten entry?

Replaced elements are @OutputDevice@-specific. The PDF renderer doesn't use
Graphics2D. At this point, an <input> element will be treated like regular content.
Adding AcroForm support is high on the list of priorities for the Flying Saucer team.

Rendering to an Image

Graphics2DRenderer

Sample Applications

The Browser
The About Box
Eeze

The Browser

The About Box

Eeze

Page of 11 14

Configuration

The Flying Saucer Configuration File

The renderer works with a simple, java.util.Properties -based
configuration system—no XML! Our
org.xhtmlrenderer.util.Confuration class loads properties on first
access and makes them available at runtime.

When you are using the renderer, Configuration needs to know where to find the
properties file. If you are running from the renderer JAR file, our default properties
will be read from there. If you have unpacked, or re-packed, the JAR, the location of
the file is currently hard-coded as /resources/conf/xhtmlrenderer.conf. This path must
be on the CLASSPATH as it is loaded as a system resource using a ClassLoader. You
need to add the parent directory for /resources to your classpath, or include /resources
in your JAR with no parent directory.

You can change the default properties for the application right in the .conf file.
However, this is not a good idea, as you will have to merge your changes back on
new releases. Plus, it will make reporting bugs more complicated. Instead, you can
use one of two override mechanisms for changing the value of individual properties.

Override with Second Conf File

Your override file should just re-assign values for properties originally given in
xhtmlrenderer.conf. Please see the documentation in that file for a description of what
each property affects. As of R3, we look for a specific override file in a specific
location, e.g.

$user.home/.flyingsaucer/local.xhtmlrenderer.conf

The user.home variable is a system property. If you call the
System.getProperty("user.home") from within any Java program on your
machine, you will find out where this is. The location is usually c:\Documents
And Settings\{username} and under the /usr directory on UNIX systems.
Try that method call to see where it is on your machine.

Override with System Properties

You can also override properties one-by-one on the command line, using System
properties. To override a property using the System properties, just re-define the
property on the command line. e.g.

java -Dxr.property-name=new_value org.xhtmlrenderer.HTMLPanel

You can override as many properties as you like. Note that overrides are driven by
the property names in the default configuration file. Specifying a property name not
in that file will have no effect—the property will not be loaded or available for

Page of 12 14

in that file will have no effect—the property will not be loaded or available for
lookup. Logging output is also controlled in this Configuration file.

If you think an override is not taking, you can change the logging behavior of the
Configuration class. Because of inter-dependencies between Configuration and the
logging system, this is a special-case key, using the System property show-config.
The allowed values are from the java.util.logging.Level class. Use ALL to
show a lot of detail about Configuration startup, OFF for none, and INFO for regular
output, like this

java -Dshow-config=ALL org.xhtmlrenderer.HTMLPanel

This will output messages to the console as Configuration is loading and looking for
overrides to the default property values for the renderer.

We have just started using the Configuration system late in preparing release R4.
Some runtime behavior that should be configurable (like XHTML parser) is not. If
you would like to see some behavior made configurable, shoot us an email.

Looking up Configuration at Runtime

To access a parameter from Configuration at runtime, just use on of the many static
methods on the Configuration class. All of these just take the full name of the
property:

String Configuration.valueFor(String)
String Configuration.valueFor(String key, String default)
byte Configuration.valueAsByte(String key, byte default)
double Configuration.valueAsDouble(String key, double default)
float Configuration.valueAsFloat(String key, float default)
int Configuration.valueAsInt(String key, int default)
long Configuration.valueAsLong(String key, long default)
short Configuration.valueAsShort(String key, short default)
boolean Configuration.isTrue(String key, boolean default)
boolean Configuration.isFalse(String key, boolean default)

Logging

The renderer uses the java.util.logging package for logging information and
exceptions at runtime. Logging behavior (output) is controlled via the main
configuration file. The defaults may be overridden just like any other configuration
properties.

Please review the java.util.logging package docs before proceeding.

We log to a set of hierarchies. The internal code—everything between a request to
load a page and the page rendering—is logged to a subhierarchy of "plumbing", e.g.
plumbing.load. Our convention is that WARNING and SEVERE levels are very
important and should always be logged. INFO messages are useful and but can be

excluded if you want a quiet ride. Anything below INFO (FINE, FINER, FINEST) is

Page of 13 14

excluded if you want a quiet ride. Anything below INFO (FINE, FINER, FINEST) is
generally only interesting for core renderer developers. We don't guarrantee that
anything below INFO will be useful, correct, practical or informative. You can
usually leave log levels at INFO for most purposes.

If you are modifying the renderer core code and want to add log messages, we
recommend you always use the org.xhtmlrenderer.XRLog class. Using this
class ensures that our log configuration is read properly before we write anything out
to the log system. The class is pretty self-explanatory, and all logging methods in it
are static. If for some reason you need to use the java.util.logging.Logger
class directly, please use XRLog.getLogger() to retrieve the instance to use.

Page of 14 14

